US009092578B2

a2z United States Patent (10) Patent No.: US 9,092,578 B2
Wefers (45) Date of Patent: Jul. 28, 2015
(54) AUTOMATED END-TO-END TESTING VIA 2005/0086022 Al* 4/2005 Lindbergetal. ............. 702/123
MULTIPLE TEST TOOLS 2007/0168744 Al* 7/2007 Paletal. ..o 714/38
2008/0086660 Al*  4/2008 Wefers ........cccccovvvvennene. 714/37
(71) Applicant: Marcus Wefers, Heidelberg (DE) 2011/0289489 AL* 112011 Rumaretal. ... 7735
(72) Inventor: Marcus Wefers, Heidelberg (DE) FOREIGN PATENT DOCUMENTS
. WO WO02012063070 A1 * 5/2012
(73) Assignee: SAP SE, Walldorf (DE)
OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 U.S. Appl. No. 09/075,844, filed May 12, 1998, entitled “Integrated
U.S.C. 154(b) by 195 days. Computer Testing and Task Management Systems”: Appendices A &
B; pp. A1-AS3 & B1-B25; 78 pages total.*
(21) Appl. No.: 13/721,480
* cited by examiner
(22) Filed: Dec. 20, 2012
Primary Examiner — Joseph Kudirka
(65) Prior Publication Data (74) Attorney, Agent, or Firm — Schwegman Lundberg &
US 2014/0181590 A1 Jun. 26, 2014 Woessner, PA.
(51) Int.Cl (57 ABSTRACT
GOOF 11/00 (2006.01) The development of automated tests that span end-to-end
GO6F 11/36 (2006.01) business processes, such as may be executed in part by each of
(52) US.CL multiple Enterprise Resource Planning systems, is a very
CPC ........ GO6F 11/3688 (2013.01); GOOF 11/3696 complex activity. Beside expert know-how of various tools,
(2013.01) such end-to-end business process testing requires various test
(58) Field of Classification Search automation tools to cover complex business processes to pro-
CPC s GOGF 11/3672; GOGF 11/3684; GOGF vide automated tests. Various embodiments herein are built
11/3688; GOGF 11/3696 on an approach for building and connecting automated end-
USPC ... 714/32,33,38.1, 39, 45, 717/124, 125, to-end tests that combines test scripts from multiple test tools.
o 7.17/ 127,131 These embodiments include functionality to assemble test
See application file for complete search history. scripts from multiple test tools into a single, composite test
. script that allows passing of information between the test
(56) References Cited

U.S. PATENT DOCUMENTS

scripts during performance of an end-to-end automated pro-
cess test. These and other embodiments are illustrated and
described herein.

6,182,245 B1* 1/2001 Akinetal. ... 714/38.14
7,039,912 B1* 5/2006 Moulden et al. .............. 718/100 18 Claims, 5 Drawing Sheets
— 100
r 106
SOFTWARE SYSTEM 1
e 10 108
PRIMARY SESTING SOFTWARE SYSTEM 2
104 "
e ‘
w
. NATIVE TEST CASES SOFTWARE SYSTEM X
- IMPORTED TEST CASES
- COMPOSITE TEST CASES
. TEST DATA . | 118
T SECONDARY TESTING
TEST API

114

118

SECONDARY TEST
TOOL DATABASE




U.S. Patent Jul. 28, 2015

Sheet 1 of 5 US 9,092,578 B2
o 100
ff106
SOFTWARE SYSTEM 1
102 108
110
{ s 4
TEST
mﬁMAiggESﬂNG —~  NTERFACE | SOFTWARE SYSTEM 2
=
Lt a
<;\~\~M_“___F~#J»/” 112
e
t‘::::i::::::::::i:j
- NATIVE TEST CASES SOFTWARE SYSTEM X
- IMPORTED TEST CASES
- COMPOSITE TEST CASES
- TEST DATA 116
~ 4
SECONDARY TESTING
TOOL
p TEST API

114

118

| SECONDARY TEST
TOOL DATABASE

FIG. 1



U.S. Patent Jul. 28, 2015 Sheet 2 of 5 US 9,092,578 B2

[/' 202
TESTING TOOL PROGRAM 208
TEST CASE
204 MODULE MODULE
- NATIVE TEST CASES
- IMPORTED TEST
/"'“ TEST CASE CASES
206 EXECUTION MODULE - COMPOSITE TEST
CASES

FiG. 2



U.S. Patent Jul. 28, 2015 Sheet 3 of 5 US 9,092,578 B2

- 300

i

— 302

COMPOSITE TEST CASE INCLUDING AN ORDER OF A PLURALITY |
OF TEST CASES INCLUDING AT LEAST AFIRST TEST CASE TO
TEST A PORTION OF APROCESS IN A FIRST SYSTEM AND A
SECOND TEST CASE IMPORTED FROM AND AUTHORED IN A
SECOND TEST TOOL TO TEST A PORTION OF THE PROCESS IN A
SECOND SYSTEM

l — 304
s
[

RECEIVE INPUT WITHIN THE EDITABLE VIEW OF THE COMPOSITE
TEST CASE ASSOCIATING AN QUTPUT OF THE PROCESS
PORTION TESTED BY THE FIRST TEST CASE IN THE FIRST

SYSTEM TO AN INPUT OF THE PROCESS PORTION TESTED BY
THE SECOND TEST CASE IN THE SECOND SYSTEM

i / Ve 306

STORE THE COMPOSITE TEST CASE ON A DATA STORAGE i
DEVICE WITHIN ATEST CASE REPOSITORY OF THE FIRST TEST |
TOOL

FiG. 3



U.S. Patent Jul. 28, 2015 Sheet 4 of 5 US 9,092,578 B2

400 B
y 402

TEST A PROCESS, THE COMPOSITE TEST CASE INCLUDING AN
ORDER OF A PLURALITY OF TEST CASES ASSOCIATED
THEREWITH THAT ARE EXECUTABLE TO TEST PORTIONS OF THE
PROCESS THAT EXISTS IN PART IN EACH OF A PLURALITY OF
SOFTWARE SYSTEMS

i . e 4@4
1/
[

RETRIEVE, FROM A TEST CASE REPOSITORY, THE COMPOSITE
TEST CASE AND DATA REPRESENTATIVE OF THE PLURALITY OF
TEST CASES ASSOCIATED THEREWITH

i “/" 406
/
{

- ACCORDING TC THE CRDER OF THE PLURALITY OF TEST CASES
DEFINED WITHIN THE COMPOSITE TEST CASE AND ACCORDING
TO CONTENT OF THE TEST CASES, ISSUE COMMANDS TO
RESPECTIVE SOFTWARE SYSTEMS EACH RESPECTIVE TEST
CASE IS ASSOCIATED TO CAUSE THE RESPECTIVE SOFTWARE
SYSTEMS TC PERFORM PORTIONS OF THE PROCESS

408
/

UPON COMPLETION OF EXECUTION OF ALL THE TEST CASES OF
THE COMPOSITE TEST CASE, EVALUATE A RESULT OF THE
PROCESS IN VIEW OF AN EXPECTED RESULT DEFINED WITHIN
EITHER THE COMPOSITE TEST CASE OR A LAST EXECUTED TEST
CASE OF THE COMPOSITE TEST CASE AND OUTPUT DATA
INDICATING A RESULT OF THE COMPOSITE TEST CASE

FIG. 4



U.S. Patent Jul. 28, 2015 Sheet 5 of 5 US 9,092,578 B2
502 510
504
N\ 4 Va
s 525
f/
PROGRAM
4506
PROCESSING
oNiT VOLATILE
|4 508
NON-VOLATILE
515 520 ~—~
REMOVABLE (/ COMMUNICATION
STORAGE / 516 CONNECTION
NON-REMOVABLE NPUT OUTPUT

STORAGE

!

\\-5‘E4

FIG. 5

518"’j



US 9,092,578 B2

1
AUTOMATED END-TO-END TESTING VIA
MULTIPLE TEST TOOLS

BACKGROUND INFORMATION

Testing software systems following implementation of the
system itself or modifying a portion thereof creates risk expo-
sure. To mitigate such risks, organizations often perform test-
ing on systems once the changes are made. However, depend-
ing on the size of the system, testing can be laborious,
expensive, and lengthy. Testing is therefore often skipped,
limited, or performed using an automated test tool that
executes test scripts.

When an automated test tool is utilized, a single automated
test tool is used to test a particular system. However, in a
typical modern organization that has integrated software sys-
tems that are built and exist on different computing platforms
and are acquired from different software systems developers
and developed organically by or for the organization, a single
automated testing tool is generally not able to test all of the
different integrated software systems. As a result, testing of
processes that exist in part on more than one of the integrated
systems, if performed on each of the integrated systems, is
performed in a piecemeal manner according to multiple test
scripts triggered independently.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 11is a logical block diagram of a system, according to
an example embodiment.

FIG. 2 is a logical block diagram of a testing tool program,
according to an example embodiment.

FIG. 3 is ablock flow diagram of a method, according to an
example embodiment.

FIG. 4 is ablock flow diagram of a method, according to an
example embodiment.

FIG. 5is ablock diagram of a computing device, according
to an example embodiment.

DETAILED DESCRIPTION

Many organizations today utilize a variety of different sys-
tems in an integrated manner to perform data processing
activities. Multiple of such systems are often involved in
processing data of a single transaction, such as receiving,
fulfilling, and shipping functions associated with a single
product order. Such processing can generally be considered a
single ordering process although subprocess thereof are
executed and performed in different, distinct software sys-
tems. For example, one software system may receive the
order, another software system may be involved in processing
and fulfilling the order, and a further software system
involved in the shipping of the order. Each of these systems
may exist within and execute on a distinct computing plat-
form and have been developed by a different software com-
pany. However, the processes of each system are but single
components of a larger ordering process within the organiza-
tion. To fully test the larger ordering process, such as to verify
anupdate to one of the single components, testing just a single
modified component is not sufficient to mitigate all risk expo-
sure as that one component, or data processed or output
thereby, interfaces with at least one other component. Thus, to
mitigate all, or at least more, risk associated with such modi-
fications, performance of an end-to-end test of the example
ordering process should be performed.

However, as each of the single components of the larger,
example ordering process is distinct in nature, different auto-

10

15

20

25

30

35

40

45

50

55

60

65

2

mated testing tools are often needed to perform such testing.
Further, the testing output of one of the components may be
needed as input for testing a next component in the ordering
process. To facilitate such end-to-end testing of such pro-
cesses that span a plurality of software systems, various
embodiments herein include at least one of systems, methods,
and software to generate and execute cross-test tool test plans
and scripts that leverage test scripts of other testing tools in a
centralized manner to provide end-to-end process testing
capabilities.

The development of automated tests that span end-to-end
business processes, such as may be executed in part by each of
multiple Enterprise Resource Planning systems, is a very
complex activity. Besides expert know-how of various tools,
such end-to-end business process testing requires various test
automation tools to cover complex business processes to pro-
vide automated tests.

Various embodiments herein are built on an approach for
building and connecting automated end-to-end tests that
combines test scripts from multiple test tools. These embodi-
ments include functionality to assemble test scripts from mul-
tiple test tools into a single, composite test script that allows
passing of information between the test scripts during perfor-
mance of an end-to-end automated process test. These and
other embodiments are illustrated and described herein.

In the following detailed description, reference is made to
the accompanying drawings that form a part hereof, and in
which is shown by way of illustration specific embodiments
in which the inventive subject matter may be practiced. These
embodiments are described in sufficient detail to enable those
skilled in the art to practice them, and it is to be understood
that other embodiments may be utilized and that structural,
logical, and electrical changes may be made without depart-
ing from the scope of the inventive subject matter. Such
embodiments of the inventive subject matter may be referred
to, individually and/or collectively, herein by the term “inven-
tion” merely for convenience and without intending to vol-
untarily limit the scope of this application to any single inven-
tion or inventive concept if more than one is in fact disclosed.

The following description is, therefore, not to be taken in a
limited sense, and the scope of the inventive subject matter is
defined by the appended claims.

The functions or algorithms described herein are imple-
mented in hardware, software or a combination of software
and hardware in one embodiment. The software comprises
computer executable instructions stored on computer read-
able media such as memory or other type of storage devices.
Further, described functions may correspond to modules,
which may be software, hardware, firmware, or any combi-
nation thereof. Multiple functions are performed in one or
more modules as desired, and the embodiments described are
merely examples. The software is executed on a digital signal
processor, ASIC, microprocessor, or other type of processor
operating on a system, such as a personal computer, server, a
router, or other device capable of processing data including
network interconnection devices.

Some embodiments implement the functions in two or
more specific interconnected hardware modules or devices
with related control and data signals communicated between
and through the modules, or as portions of an application-
specific integrated circuit. Thus, the exemplary process flow
is applicable to software, firmware, and hardware implemen-
tations.

FIG. 1 is a logical block diagram of a system 100, accord-
ing to an example embodiment. The system 100 includes a
plurality of software systems 106, 108, 112 on which ele-
ments of a single process exist and execute. Each of the



US 9,092,578 B2

3

plurality of software systems 106, 108, 112 are distinct from
one another at least to the extent that different portions of a
single process are deployed to each. However, in a typical
embodiment, each of the software systems 106, 108, 112 are
from different software system development entities and
therefore are typically not identical software systems. For
example, software system 106 may be an Enterprise Resource
Planning (ERP) system available from SAP AG of Waldorf,
software system 108 may be a logistics-related software sys-
tem available from a different company or developed organi-
cally by an entity utilizing the system 100, and the software
system 112 may be a web-platform through which customers
interact with the entity utilizing the system 100. As is readily
apparent, each ofthe software systems 106, 108, 112 are quite
different from one another and performing end-to-end testing
of'a process that spans each of the software systems 106, 108,
112 to date has been quite complex as each has unique aspects
for testing.

The system 100 further includes a primary testing tool 102
and a secondary testing tool 116. The primary testing tool 102
is typically a testing tool that is compatible with at least one of
the software systems 106, 108, 112 to perform automated
testing according to test cases/scripts defined therein and
stored in and retrievable from a database 104. (Note that
references to test cases and test scripts herein are used syn-
onymously, unless stated otherwise). For example, when the
software system 106 is a software system available from SAP
AG of Waldorf, Germany, the primary testing tool 102 may be
the SAP Solution Manager tool. The secondary testing tool
116 may be virtually any other automated software testing
tool, such as the HP QuickTest Professional (also known as
HP QTP orjust simply QTP) automated testing tool available
from Hewlett-Packard Development Company, L..P. of Palo
Alto, Calif. The software system 108 is not illustrated as
having a dedicated secondary testing tool associated there-
with. However, the software system 108 may have such as
secondary testing tool in some embodiments, while in other
embodiments, the primary testing tool 102 or the secondary
testing tool 116 may be dedicated to servicing automated
testing functions therefore.

Each of the primary testing tool 102 and the secondary
testing tool 116 provide users abilities to author test cases that
can be executed in an automated fashion. Such test cases are
generally for testing smaller, siloed portions of a software
system, such as auser interface, a path through a series of user
interfaces, a process or string of processes that execute only
within the bounds of a single software system under test.
These test cases and any specific test data that may be needed
to execute a particular test case are stored by the primary
testing tool 102 and the secondary testing tool 116 in their
own repositories, such as a primary testing tool 102 database
104 and a secondary testing tool 116 database 118.

The primary testing tool 102 of'the system 100 includes an
ability to communicate with other testing tools, such as the
secondary testing tool 116. Communication between the pri-
mary testing tool and other testing tools may be direct accord-
ing to a communication protocol shared by the primary test-
ing tool 102 and one or more other testing tools or indirect.
Indirect communication between the primary testing tool 102
and one or more other testing tools may be conducted via an
application programming interface (API), such as test APT
114 of the secondary testing tool 116, an intermediary inter-
face 110, such as test interface 110, or other data communi-
cation interface operable to connect the primary testing tool
102 with one or more other testing tools or software systems.

The primary testing tool 102, in some embodiments,
includes functionality to natively author and store test cases

10

15

20

25

30

35

40

45

50

55

60

65

4

with regard to software systems with which it is integrated,
such as software system 106. The primary testing tool 102 is
also able to import and store data representative of test cases
defined in and stored by other testing tools, such as the sec-
ondary testing tool 116. The imported data of test cases of
other testing tools may include data identifying test cases, test
data associated or otherwise associable with those test cases,
attributes and properties of the test cases, metadata of the test
cases such as may provide information about which software
system(s) and functionality thereof are tested by the test
cases, and the like. The imported data of test cases is stored by
the primary testing tool 102 in database 104, which operates
as a test case repository. Test cases natively authored within
the primary testing tool 102 and test cases imported from the
other testtools are viewable and selectable within the primary
testing tool 102. Further, some embodiments include abilities
to modify test cases imported from other testing tools either
within the primary testing tool 102 with changes stored back
to the testing tool from which the test case was imported or by
launching an application of the secondary testing tool 116
through which test cases of the secondary testing tool 116 are
authored.

The primary testing tool 102 includes further functionality
to create composite test cases. A composite test case is a test
case that includes multiple other test cases that are stored or
represented in the test case repository resident in the database
104. For example, a composite test case may include one or
more test cases natively authored within the primary testing
tool 102 and one or more test cases imported from one or
more other software testing tools, such as the secondary test-
ing tool 116. A composite test case author may search the test
case repository for test cases, select test cases to add to the
composite test case, and set an execution order of the test
cases added to the composite test case. The execution order of
test cases will typically be set to order test cases associated
with process steps according to order of steps in a process to
be tested by the composite test case. In some instances, an
output of one test case is an input for one or more other test
cases. Such data relations between test cases can be specified
in a composite test case authored with the primary testing tool
102. Further, in some embodiments, when setting an execu-
tion order of the test cases within a composite test case, test
cases may be designated as executable in parallel with one
another, such as when a process includes portions that execute
within two or more different software systems or where a
single software system allows for parallel execution of test
cases.

Additionally, some test cases defined within testing tools
may include test data, attributes, and parameters that are
utilized during execution to feed the test case or a portion of
a software system being tested with information needed for
execution. However, one or more of the test data, attributes,
and parameters of a particular test case may not comport with
a composite test case being authored. In such embodiments,
the test case may be inherited and certain things overridden in
an object-oriented programming-type manner. For example,
a copy of a test case may be created and certain elements
(instructions, test data, attributes, and properties) may be
overridden. The copy of the test case and the modifications
thereto will be stored at least in part in the test case repository
of the database 104. However, when a test case is from
another testing tool, the test case copy may be generated
within a test case repository of the other testing tool, such as
within the secondary testing tool 116 database 118.

The primary testing tool 102 is also able to execute com-
posite test cases. A trigger input may be received with regard
to a particular composite test case. The primary testing tool



US 9,092,578 B2

5

102 may then retrieve data with regard to the particular com-
posite test case and issue commands, which may also include
arguments, to one or more of the software systems 106, 108,
112 directly or via another testing tool, such as the secondary
testing tool 116, to cause the other testing tool to execute
particular test cases included in the composite test case being
executed. By executing a composite test case, the primary
testing tool 102 is able to cross system boundaries that exist in
processes many modern organizations to provide end-to-end
processing testing capabilities.

Further, composite test cases, being modular in nature,
provide for streamlined maintenance and development. First,
if a portion of one or more of the software systems 106, 108,
112 is modified, only the test cases that test the modified
portions need to be updated. If the modifications do not affect
other portions of a process tested by a composite test case, no
other test case changes need to be made. Instead, a composite
test case that encompasses a test case of a modified system
portion is typically able to just utilize the updated test case.
An exception to that may be where a test case copy has been
taken, as described above. However, such test cases can easily
be identified within the test case repository in the primary
testing tool database 102 and test case repositories of other
testing tools, such as the secondary testing tool 116 database
118, such as through application of simple compare func-
tions. With regard to newly developed or expanded portions
of'a process that is a subject of a composite test case, a new
composite test case need not be created. Instead, test cases can
be created for the newly developed or expanded portions of
the process and added to the existing composite test case.
Thus, not only do the system 100 and the composite test cases
provide end-to-end process testing abilities across technical
and system boundaries, the system 100 and composite test
cases provide a highly flexible, easily maintainable solution.

In some further embodiments, the primary testing tool 102,
rather than being a testing tool within which standard, non-
composite test cases are authored, such as SAP Solution
Manager and HP QTP, is instead an add-on module to such
testing tools or a standalone software program that provides
the end-to-end composite test case authoring and execution
capabilities. As an add-on module or standalone program in
such embodiments, the primary testing tool 102 is able to
communicate with one or more secondary testing tools 116 to
import test case data and guide execution of test cases therein.

FIG. 2 is alogical block diagram of a testing tool program
202, according to an example embodiment. The testing tool
program 202 is an example of a program that may be utilized
to author and execute test cases and composite test cases. The
testing tool program 202 is also an example of program that
may be implemented in the system 100 of FIG. 1 as the
primary testing tool 102.

In some embodiments, the testing tool program 202
includes three modules. The three modules include a test case
composition module 208, a test case import module 204, and
a test case execution module 206.

The test case composition module 208 provides interfaces
through which a user may view test cases in various forms. In
some embodiments, the views include one or more of a test
case listing, a test case detail view, a composite test case view,
among others. Some such allow users to author, including
modifying, test cases, including composite test cases. In the
instance of viewing an imported test case, certain portions of
the data may not be editable, such as portions that are only
editable within a different testing tool in which the imported
test case was authored. Some such views however may
include a user interface control that can be selected when
viewing an imported test case to view an interface in which

10

25

40

45

55

6

the imported test case can be modified. In various embodi-
ments, this interface may be an interface of the testing tool
program 202 or an interface of the testing tool in which the
imported test case was authored.

A composite test case view may be presented in several
ways in different embodiments or according to user prefer-
ences. For example, some embodiments may include spatial
representations of test cases included within a composite test
case, such as in an expandable and collapsible tree view.
Other embodiments may include graphical workflow type
presentations. Yet others may simply include a listing of test
cases included in a composite test case sortable by different
data elements included in the test cases. The composite test
case view may also include a search utility to search atest case
repository for test cases to add to a composite test case. Test
cases may be selected in such a utility for addition to a
composite test case. Once test cases are added to a composite
test case, an order can be assigned or modified. Such an order
may be made in a drag-and-drop manner, but other mecha-
nisms may also or alternatively be provided, such as a simple
numbering and the like as would be readily apparent to a user
interface developer of ordinary skill.

The composite test case view, in some embodiments, also
provide user interface controls to associate output of one test
case or a portion of a software system tested by a test case to
be associated with input of another test case. In addition, a
composite test case view may provide an option to associate
a test dataset with the composite test case or one or more
specific test cases included therein. Such a test dataset would
be instantiated within a particular database or other data store
as part of executing the composite test case or included test
case.

Some further composite test case views may include an
ability to associate attributes and parameters with a compos-
ite test case or one or more test cases included therein. Such
attributes and parameters may include security credentials, a
number of records to be retrieved, system under test options,
user interface preferences, and the like. Some embodiments
allow for such attributes and parameters to be specified in the
composite test case even when they already exist in an
included test case. In such an instance, the attribute or param-
eter specified in the composite test case will take precedence.

In some embodiments, the composite test case view may
also allow for an associating with one or more test configu-
rations. A test configuration is generally a data structure that
will be consumed when a composite test case is executed. The
data structure of a test configuration may identify application
instances within one or more software systems the test cases
of'a composite test case is to execute against, security creden-
tials for connecting to such software systems, and the like.

Thetest case import module 204 includes a utility for use in
importing test cases from one or more other test tools. The test
case import module 204 may provide a test tool browser view
to allow a user to locate a test tool from which to view
available test cases for import. The test case import module
204 may then allow importation of data representative of all
test cases in a selected test tool or allow a user to view test
cases available for import and to select which test cases to
import. The test case import module 204 may then retrieve
data representative of the test cases to be imported and store
that data in a test case repository of the testing tool program
202.

The test case execution module 206 is operable to receive
input to trigger execution of a test case or a composite test
case, including execution of the test cases included within the
composite test case. The test execution module in such
instances may retrieve the data of the composite test case to be



US 9,092,578 B2

7

executed, the test cases included therein, and other data asso-
ciated with the composite test case, such as a test configura-
tion and test data. The test case execution module 206 will
then set environmental variables for the composite test case to
execute, such as loading test data in one or more software
systems to be tested and then begin issuing commands to the
various software systems to be tested according to an order of
the test cases. As test cases complete execution, a log of test
case execution results may be stored, such as in the test case
repository or a log file stored elsewhere.

FIG. 3 is a block flow diagram of a method 300, according
to an example embodiment. The method 300 is an example of
a method performed by a first test tool in authoring of a
composite test case. The method 300 in some embodiments
includes presenting 302 an editable view of a composite test
case. The composite test in such embodiments includes an
order of a plurality of test cases. The plurality of test cases
may include at least a first test case to test a portion of a
process that executes on a first system and a second test case
imported from and authored in a second test tool to test a
portion of the process that executes on a second system. The
first test case may have been authored within the first test tool,
but in other embodiments, the first test tool is an add-on
module to another test tool to facilitate authoring and execu-
tion of composite test cases.

The method 300 further includes receiving 304 input
within the editable view of the composite test case. The
received input may associate an output of the process portion
tested by the first test case in the first system to an input of the
process portion tested by the second test case in the second
system. The composite test case may then be stored 306 on a
data storage device within a test case repository of the first test
tool.

In some embodiments, upon completion of execution of
the first test case in the first system and according to the input
received 304 within the editable view of the composite test
case, data output by the process portion tested by the first test
case is captured. Subsequently during execution of the com-
posite test case, when issuing a command to the second sys-
tem to cause the second system to test the portion of the
process tested by the second test case, the captured data
output by the process portion tested by the first test case is
provided as input to the second test case.

Some embodiments of the method 300 further include
importing data representative of the second test case from the
second test tool into the first test tool. The data representative
of'the second test case may then be stored on the data storage
device within the test case repository of the first test tool. This
importing of data representative of the second test case is
performed prior to adding the second test case to the compos-
ite test case.

Once a composite test case is authored and stored, the
composite test case can be executed. FIG. 4 provides an
example of a method 400 that may be performed to execute a
composite test case.

FIG. 4 is a block flow diagram of a method 400, according
to an example embodiment. Execution of a composite test
case begins with a testing tool, such as the first testing tool, the
test case repository of which in the composite test case is
stored, receiving 402 trigger input to execute the composite
test case. In response to the trigger input, the first test tool
retrieves 404 the composite test case and the plurality of test
cases including the first test case and the second test case from
the test case repository. Then, according to the order of the
plurality of test cases and content of the test cases, the first
testing tool issues 406 commands to respective systems of
each test case of the composite test case to cause the respec-

10

15

20

25

30

35

40

45

50

55

60

65

8

tive systems to test portions of the process. The commands to
the respective systems may be sent directly to the target
systems or indirectly via particular testing tools associated
with the respective systems. A command in some instances
may be a command to a particular test tool to execute a
particular test case of the composite test case that exists in the
particular target test tool.

In some embodiments, upon completion of execution of all
the test cases of the composite test case, the method 400
includes evaluating a result of the tested process in view of an
expected result. The expected result, in some embodiments,
may be defined within either the composite test case or a last
executed test case of the composite test case and output data
indicating a result of the composite test case. In other embodi-
ments, a result of the composite test case and test cases
included therein may be written to a log and compared with
expected results either defined within the test cases or pre-
sented to a user for review and manual determination.

In some embodiments of the method 400, prior to issuing
406 commands to cause test cases to be executed, a test
configuration is retrieved. Such a test configuration includes
at least one of data identifying instances of each of the plu-
rality of software systems to be tested and security credentials
to access the instances of the plurality of software systems to
be tested. In some such embodiments, the test configuration
to retrieve is identified in an argument received with the
command to execute the composite test case. Once retrieved,
the method 400 utilizes the test configuration to identify and
set a state of the software systems against which the test cases
of'a composite test case are to execute.

In some embodiments, prior to issuing 406 commands to
software systems to execute test cases, the commands are first
encoded according to a unique application programming
interface standard of the software system to which the com-
mands are to be sent. This may include the testing tool per-
forming the encoding, but may alternatively include interface
objects that operate to translate commands from a protocol of
the testing tool to a particular protocol or the unique applica-
tion programming interface standard as need to communicate
with a particular software system or testing tool associated
therewith.

FIG. 5 is a block diagram of a computing device, according
to an example embodiment. In one embodiment, multiple
such computer systems are utilized in a distributed network to
implement multiple components in a transaction-based envi-
ronment. An object-oriented, service-oriented, or other archi-
tecture may be used to implement such functions and com-
municate between the multiple systems and components. One
example computing device in the form of a computer 510,
may include a processing unit 502, memory 504, removable
storage 512, and non-removable storage 514. Memory 504
may include volatile memory 506 and non-volatile memory
508. Computer 510 may include—or have access to a com-
puting environment that includes—a variety of computer-
readable media, such as volatile memory 506 and non-vola-
tile memory 508, removable storage 512 and non-removable
storage 514. Computer storage includes random access
memory (RAM), read only memory (ROM), erasable pro-
grammable read-only memory (EPROM) & electrically eras-
able programmable read-only memory (EEPROM), flash
memory or other memory technologies, compact disc read-
only memory (CD ROM), Digital Versatile Disks (DVD) or
other optical disk storage, magnetic cassettes, magnetic tape,
magnetic disk storage or other magnetic storage devices, or
any other medium capable of storing computer-readable
instructions. Computer 510 may include or have access to a
computing environment that includes input 516, output 518,



US 9,092,578 B2

9

and a communication connection 520. The computer may
operate in a networked environment using a communication
connection to connect to one or more remote computers, such
as database servers. The remote computer may include a
personal computer (PC), server, router, network PC, a peer
device or other common network node, or the like. The com-
munication connection may include a Local Area Network
(LAN), a Wide Area Network (WAN) or other networks.

Computer-readable instructions stored on a computer-
readable medium are executable by the processing unit 502 of
the computer 510. A hard drive, CD-ROM, and RAM are
some examples of articles including a non-transitory com-
puter-readable medium. For example, a computer program
525 capable of performing one or more of the methods, or
portions thereof, as illustrated and described herein, such as
the primary testing tool 102 of FIG. 1 and 202 of FIG. 2.

It will be readily understood to those skilled in the art that
various other changes in the details, material, and arrange-
ments of the parts and method stages which have been
described and illustrated in order to explain the nature of the
inventive subject matter may be made without departing from
the principles and scope of the inventive subject matter as
expressed in the subjoined claims.

What is claimed is:
1. A method performed by a first test tool, the method
comprising:

presenting an editable view of a composite test case within
the first test tool, the composite test case including an
order of a plurality of test cases including at least a first
test case to testa portion of a process in a first system, the
first test case authored in the first test tool, and a second
test case imported from and authored in a second test
tool to test a portion of the process in a second system;

receiving, within the first test tool, input to override, in an
object oriented manner, at least one of a parameter and
an attribute of a test case of one or both of the first and
second test cases when the respective test case is
executed;

receiving, within the first test tool, input within the editable
view of the composite test case associating an output of
the process portion tested by the first test case in the first
system to an input of the process portion tested by the
second test case in the second system; and

storing, by the first test tool, the composite test case on a
data storage device within a test case repository of the
first test tool.

2. The method of claim 1, further comprising:

importing data representative of the second test case from
the second test tool into the first test tool and storing the
data representative of the second test case on the data
storage device within the test case repository of the first
test tool.

3. The method of claim 1, further comprising:

receiving trigger input within the first test tool to execute
the composite test case;

in response to the trigger input, retrieving the composite
test case and the plurality of test cases including the first
test case and the second test case from the test case
repository;

according to the order of the plurality of test cases and
content of the test cases, issuing commands to respective
systems of each test case of the composite test case to
cause the respective systems to perform portions of the
process;

upon completion of execution of the first test case in the
first system and according to the input received within

5

10

25

30

35

40

45

60

65

10

the editable view of the composite test case, capturing
data output by the process portion tested by the first test
case; and

when issuing a command to the second system to cause the

second system to test the portion of the process tested by
the second test case, providing the captured data output
by the process portion tested by the first test case as
input.

4. The method of claim 1, wherein the first system and the
second system are not identical systems and were developed
by different software development entities.

5. The method of claim 1, further comprising:

receiving input modifying content of a test case included

within the composite test case;

generating a copy the of the modified test case including

the modification to the content; and

storing the copy of the modified test case leaving the test

case originally modified remaining as it was prior to the
modification.

6. The method of claim 1, further comprising:

receiving input associating the composite test case with a

test configuration, the test configuration including at
least one of data identifying instances of a plurality of
systems to be tested and security credentials to access
the instances of the plurality of systems to be tested.

7. A non-transitory computer-readable data storage device,
with instructions stored thereon, which when executed by at
least one processor of at least one computing device, cause the
at least one computing device to:

receive a command to execute a composite test case to test

a process, the composite test case including an order of
a plurality of test cases associated therewith that are
executable to test portions of the process that exists in
part in each of a plurality of software systems, at least
one of the plurality of test cases authored in a program
within which the composite test case was authored and
executes;

retrieve, from a test case repository, the composite test case

and data representative of the plurality of test cases
associated therewith, wherein the data representative of
the plurality of test cases includes data with regard to at
least one test case that includes data overriding at least
one of a parameter, attribute, and instruction when the
respective test case is executed;

according to the order of the plurality of test cases defined

within the composite test case and according to content
of the test cases, issue commands to respective software
systems each respective test case is associated to cause
the respective software systems to perform portions of
the process; and

upon completion of execution of all the test cases of the

composite test case, evaluate a result of the process in
view of an expected result defined within either the
composite test case or a last executed test case of the
composite test case and output data indicating a result of
the composite test case.

8. The non-transitory computer-readable data storage
device of claim 7, wherein the instructions are further execut-
able by the at least one processor of the at least one computing
device to:

retrieve a test configuration including at least one of data

identifying instances of each of the plurality of software
systems to be tested and security credentials to access
the instances of the plurality of software systems to be
tested.

9. The non-transitory computer-readable data storage
device of claim 8, wherein the test configuration to retrieve is



US 9,092,578 B2

11

identified in an argument received with the command to
execute the composite test case.

10. The non-transitory computer-readable data storage
device of claim 7, wherein when issuing commands to the
respective software systems, commands to at least one of the
respective software systems are first encoded according to a
unique application programming interface standard of the
software system to which the commands are to be sent.

11. The non-transitory computer-readable data storage
device of claim 7, wherein the composite test case includes
data associating an output of a process portion tested by a first
test case in a first software system to an input of a process
portion tested by a second test case in the second software
system.

12. The non-transitory computer-readable data storage
device of claim 11, wherein the instructions are further
executable by the at least one processor of the at least one
computing device to:

upon completion of execution of the first test case in the

first software system and according to the data associat-
ing the output of the process portion tested by the first
test case, capture data output by the process portion
tested by the first test case; and

when issuing a command to the software second system to

cause the second software system to test the portion of
the process tested by the second test case, provide the
captured data output by the process portion tested by the
first test case as input.

13. A system comprising:

at least one computing device including at least one com-

puter processor and at least one memory device; and

a first test tool program stored on the at least one memory

device and executable by the at least one computer pro-

cessor of that at least one computing device to:

present an editable view of a composite test case within
a composite test case module of the first test tool
program, the composite test case including an order of
a plurality of test cases including at least a first test
case, the first test case authored within a native test
cases module of the first test tool program to test a
portion of a process in the system and a second test
case imported from and authored in a second test tool
program to test a portion of the process in a second
system,

receive input to override, in an object oriented manner, at
least one of a parameter and an attribute of a test case
of one or both of the first and second test cases when
the respective test case is executed;

receive input within the editable view of the composite
test case associating an output of the process portion
tested by the first test case in the system to an input of
the process portion tested by the second test case in
the second system; and

store the composite test case on the at least one memory
device within a test case repository of the first test tool
program.

10

15

20

25

30

35

40

45

50

55

12

14. The system of claim 13, further comprising:
at least one network interface device; and
wherein the editable view is presented through user inter-
face data generated by the first test tool program and
transmitted to a client over a network via the at least one
network interface device.
15. The system of claim 13, further comprising:
at least one network interface device; and
wherein the first test tool program is further executable to:
import, over a network via the at least one network
interface device, data representative of the second test
case from the second test tool program into the first
test tool program and storing the data representative
of the second test case on the at least one memory
device within the test case repository of the first test
tool program.
16. The system of claim 13, wherein the first test tool
program is further executable to:
receive trigger input within the first test tool program to
execute the composite test case;
in response to the trigger input, retrieve the composite test
case and the plurality of test cases including the first test
case and the second test case from the test case reposi-
tory;
according to the order of the plurality of test cases and
content of the test cases, issue commands to respective
systems of each test case of the composite test case to
cause the respective systems to perform portions of the
process;
upon completion of execution of the first test case and
according to the input received within the editable view
of the composite test case, capture data output by the
process portion tested by the first test case; and
when issuing a command to the second system to cause the
second system to test the portion of the process tested by
the second test case, provide the captured data output by
the process portion tested by the first test case as input.
17. The system of claim 13, wherein the first test tool
program is further executable to:
receive input modifying content of a test case included
within the composite test case;
generate a copy of the modified test case including the
modification to the content; and
store the copy of the modified test case leaving the test case
originally modified remaining as it was prior to the
modification.
18. The system of claim 13, wherein the first test tool
program is further executable to:
receive input associating the composite test case with a test
configuration, the test configuration including at least
one of data identifying instances of a plurality of sys-
tems to be tested and security credentials to access the
instances of the plurality of systems to be tested.

#* #* #* #* #*



